909 research outputs found

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Electronic structure reconstruction by orbital symmetry breaking in IrTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on IrTe2 which exhibits an interesting lattice distortion below 270 K and becomes triangular lattice superconductors by suppressing the distortion via chemical substitution or intercalation. ARPES results at 300 K show multi-band Fermi surfaces with six-fold symmetry which are basically consistent with band structure calculations. At 20 K in the distorted phase, whereas the flower shape of the outermost Fermi surface does not change from that at 300 K, topology of the inner Fermi surfaces is strongly modified by the lattice distortion. The Fermi surface reconstruction by the distortion depends on the orbital character of the Fermi surfaces, suggesting importance of Ir 5d and/or Te 5p orbital symmetry breaking.Comment: 4pages, 4figure

    Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on a triangular lattice superconductor Ir1x_{1-x}Ptx_{x}Te2_2 in which the Ir-Ir or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit interaction are cooperating and competing with one another. The Fermi surfaces of the substituted system are qualitatively similar to the band structure calculations for the undistorted IrTe2_2 with an upward chemical potential shift due to electron doping. A combination of the ARPES and the band structure calculations indicates that the Te 5p5p spin-orbit interaction removes the px/pyp_x/p_y orbital degeneracy and induces px±ipyp_x \pm ip_y type spin-orbit coupling near the A point. The inner and outer Fermi surfaces are entangled by the Te 5p5p and Ir 5d5d spin-orbit interactions which may provide exotic superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure

    Electronic structure of NiS1x_{1-x}Sex_x across the phase transition

    Full text link
    We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across the so-called metal-insulator transition as a function of temperature as well as composition. The present results convincingly demonstrate that the low temperature, antiferromagnetic phase is metallic, with a reduced density of states at EF_F. This decrease is possibly due to the opening of gaps along specific directions in the Brillouin zone caused by the antiferromagnetic ordering.Comment: Revtex, 4 pages, 3 postscript figure

    Polyethylene imine-based receptor immobilization for label free bioassays

    Get PDF
    Polyethylene imine (PEI) based immobilization of antibodies is described and the concept is proved on the label free assay of C-Reactive Protein (CRP). This novel immobilization method is composed of a hyperbranched PEI layer which was deposited at a high pH (9.5) on the sensor surface. The free amino groups of PEI were derivatized with neutravidin by Biotin N-hydroxysuccinimide ester and the biotinylated anti-CRP antibody immobilized on this layer. Direct binding assay of recombinant CRP was successfully performed in the low μg/ml concentrations using a label free optical waveguide biosensor
    corecore